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Abstract

We introduce location choice in a multi-sector general equilibrium model to

study how it affects development accounting. Producers in agriculture, manu-

facturing and services choose their location to trade off land rents with transport

costs to the city center. We show how space affects the aggregate production

function and decompose output per worker into productivity, land per worker,

and a term adjusting for sector location. In our model, services are luxury

goods. As a result, richer cities have larger service cores, higher service prices,

and relatively less output per worker in services. These predictions are broadly

consistent with the data. We calibrate our model to data on cities in OECD

countries and show that land and location explain 10–30 percentage points of

the variation in output per worker.

Output per worker is much lower in poor countries than in rich ones (Klenow

and Rodriguez-Clare 1997; Hall and Jones 1999; Caselli 2005). To understand the

fundamental causes of productivity differences, it is important to identify the sectors

in which these differences are the greatest. Several recent papers have studied the

sectoral composition of productivity differences by using data on sector-level inputs,

outputs and prices (Baily and Solow 2001; Caselli 2005; Restuccia, Yang, and Zhu

2008; Duarte and Restuccia 2010; Duarte and Restuccia 2015). Their main result is
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that productivity differences are sizeable and they are larger in agriculture than in

manufacturing and services.1

Labor productivity depends on the quantity or quality of inputs used in the pro-

duction process. Here we argue that land input has been conspicuously missing

from development accounting exercises to date. Controlling for land when estimating

macro productivity is important for two reasons. First, countries with high popu-

lation density are relatively scarce in land and, to the extent that land matters in

production, these countries will have low labor productivity. Second, land varies in a

crucial quality component: its proximity to consumers. Urban land is more valuable

because it is more productive in producing goods and services with high transport

costs. Again, countries may differ in the availability of urban land. Accounting for

land and location is especially important for sector-level development accounting.

Agriculture uses land intensively and will be especially sensitive to controlling for

the quantity of land. Services, in turn, locate in urban areas and will be especially

sensitive to controlling for location.

To understand how land and location affect development accounting, we build a

simple multi-sector general equilibrium model. Each sector uses labor (or a composite

of other spatially mobile inputs) and land. The location of sectors is determined as

in the canonical von Thünen city model. In the model, all trade happens in the city

center, the central business district (CBD). Producers choose their location freely on

a plane, and have to pay a shipping cost to transport their goods to the CBD. This

spatial structure introduces variable land-quality to the model, as land closer to the

CBD saves on transport cost. Equilibrium rents decrease with distance from the CBD,

and the producers optimally choose locations to balance savings on transport costs

with higher rents. Our model yields a simple spatial equilibrium in which agriculture

(“cattle”) locates farthest away from the center, manufacturing (“steaks”) occupies

a ring outside the center, and services (“restaurants”) are in a central circle.

We can decompose output per worker into three components: (i) Hicks neutral

productivity (which will also capture the presence of spatially mobile factors such

as capital), (ii) land per worker, and (iii) a term reflecting distance to consumers.

Components (ii) and (iii) are novel to our model. First, as some sectors are more land

intensive, their labor productivity will be more sensitive to the scarcity or abundance

of land. Conditional on other productivity factors, agricultural output per worker

will be higher in countries with an abundant supply of land. Second, urban sectors

1These results are in line with the classic Balassa-Samuelson literature (Balassa 1964; Samuelson

1964; Baumol and Bowen 1965; Baumol 1967), which explains sectoral price-level differences by

productivity advantage of manufacturing over services.
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(such as services) will be relatively more productive in smaller cities where transport

costs are lower.

To quantify the importance of these two mechanisms, we calibrate our model to

city-level data on employment density, city size, and GDP per capita (from the OECD

Metropolitan Areas Database) and country-level prices and expenditure shares (from

the International Comparison Program). We set common technology parameters to

match the sectoral land-shares and spatial distribution of economic activities in the

U.S. We then use the calibrated model to decompose output per worker into the three

components for each city.

Perhaps unsurprisingly, the largest variation across cities in output per worker is

due to variation in Hicks neutral productivity. We estimate this productivity variation

to be essentially the same in the three broad sectors. This is in contrast with the

existing literature, which finds more variation agricultural productivity (Caselli 2005;

Restuccia, Yang, and Zhu 2008),2 and less variation in services productivity (Balassa

1964; Samuelson 1964; Herrendorf and Valentinyi 2012).3

Variation in land per worker explains up to 30 percentage points of productivity

differences across the cities in our sample. This variation is biggest in agriculture,

which uses land intensively. In our sample, land per worker does not vary systemati-

cally with development.

Sector location explains up to 10 percentage points of productivity differences.

This varies systematically with development as poorer cities spend less on services

and have smaller service cores. Transportation costs in these cities is lower and output

per worker is higher.

More broadly, our model illustrates how to incorporate space in a simple develop-

ment accounting model and that transport costs can have macro relevance. In related

work, Ramondo, Rodŕıguez-Clare, and Saboŕıo-Rodŕıguez (2016) incorporate space in

a macro model with transport costs, arguing that large countries have larger transport

costs and hence not as high GDP per capita. The main difference is that while Ra-

mondo, Rodŕıguez-Clare, and Saboŕıo-Rodŕıguez (2016) capture average trade costs

across cities within a country, our main focus is the within-city trade cost and spatial

structure. Also related are Desmet and Rossi-Hansberg (2013), who study an en-

dogenous system of cities (in our work, cities are exogenous in size) and Desmet and

Rossi-Hansberg (2014), who study cities and growth (our model is static). Neither of

2Admittedly, data on metropolitan areas is less informative about productivity in agriculture

than in the two other sectors.
3Duarte and Restuccia (2015) find that productivity in tradable business services varies more

than in manufacturing.
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these papers focus on the spatial allocation of sectors as we do.

Lagakos and Waugh (2013) study a model of structural change where workers vary

in agricultural productivity. In poor countries, more people will work in agriculture,

and their average productivity will be low. Our model features a similar mechanism,

but in our setting, it is the productivity of land that is heterogeneous, as it depends

on distance to the center. In rich countries, more land will be devoted to services,

resulting in relatively lower output per worker.

Our model is motivated by four robust empirical facts. First, urban land becomes

more important with development relative to rural land (Clark 2007, Figure 10.3).

Second, the relative price of services increase with development. This is known as

Baumol’s cost disease (Baumol and Bowen 1965) or the Balassa-Samuelson effect

(Balassa 1964; Samuelson 1964). Third, rich countries are more urbanized (United

Nations 2014). Fourth, rich countries produce less agriculture and more services

(Kuznets 1973; Ngai and Pissarides 2007; Kongsamut, Rebelo, and Xie 2001). As we

show below, our model is capable of explaining these facts in a simple framework.

1 A model of industry location

We introduce location choice to a multi-sector general equilibrium model. We have

three sectors: agriculture, manufacturing and services, each using land and labor for

production. Our spatial structure follows the von Thünen monocentric city model:

producers choose a location on the plane and need to transport their goods to the

central business district.

1.1 Consumers

To be consistent with Fact 4, we assume non-homothetic consumer preferences. We

follow Fieler (2011) in assuming an isoelastic utility function with different elasticities

for the three sectors,4

u =
3∑
i=1

α
1/σi
i

σi
σi − 1

c
1−1/σi
i , (1)

where αi > 0 is the weight of sector i and σi governs the sector’s price and income

elasticity. Anticipating the spatial ordering of sectors, we let i = 1 index services, 2

will stand for manufacturing, and 3 for agriculture.

4We have estimated the preferences proposed by Kongsamut, Rebelo, and Xie (2001), Ngai and

Pissarides (2007) and Herrendorf, Rogerson, and Valentinyi (2013) on cross-country data, but this

provided a poor fit for rich countries, where the role of necessity spending is vanishingly small.
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There is a mass N of consumers who supply one unit of labor inelastically, and

rent land to producers in a competitive market. They are absentee landlords : the

rents they collect are independent of the place of employment.

The budget constraint of a representative consumer is∑
i

Pici = W +
1

N

∫
z

R(z)L̃(z)dz, (2)

where R(z) is the rent as a function of the distance to the center (see later), and W

is the wage. Because labor is freely mobile, wages do not depend on location.

The sectoral consumption expenditures satisfy

Pici = αiλ
−σiP 1−σi

i , (3)

where λ is the Lagrange multiplier of the budget constraint, which is decreasing in

income. For a given set of prices, the expenditure of good i relative to good j is

increasing in income if σi > σj. The income elasticity of good i is

∂ ln ci
∂ ln y

=
σi∑
j xjσj

, (4)

where xj = Pjcj/
∑

k Pkck is the expenditure share of good j.

1.2 Producers

Output in sector i at location z depends on labor N and land L used at that location,

Qi(z) = AiLi(z)βiNi(z)1−βi .

We take labor to be freely mobile within the country, land is in fixed L̄(z) supply in

each location. The names “land” and “labor” are for the sake of convenience, these

two factors correspond to spatially fixed and mobile factors, respectively, and we will

calibrate them accordingly.

Sectors differ in their land shares βi and Hicks neutral productivity shifter Ai.

All products are sold and consumed at a single location, the central business district.

This is location z = 0, so that z indexes distance to the center. To ship a product to

the center, one has to incur shipping costs. If a unit of product i leaves location z,

only

e−τiz

units arrive at the center. This is akin to the iceberg assumption of transport costs.

Sectors also differ in the intensity of shipping costs τi.
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Profits in sector i from production at z is

Πi(z) = Pie
−τizQi(z)−WNi(z)−R(z)Li(z). (5)

A sector being active at location z requires that their maximized profit max Πi(z) ≥ 0.

1.3 Spatial Equilibrium

We assume the city is circular with radius z3 so that the available land at each distance

z is L̄(z) ≡ 2zπ for z ∈ [0, z3] and zero otherwise. We study symmetric equilibria

where the distance to the CBD completely characterizes a location.

Definition 1. The competitive spatial equilibrium in a circular city is a set of quan-

tities {ci, Qi(z), Li(z), Ni(z)}3i=1 and prices {Pi, R(z),W}3i=1 such that

1. The consumer chooses {ci}3i=1 to maximize utility (1) subject to its budget con-

straint (2), taking prices as given.

2. The producers choose sector i and location z, and nonnegative quantities {Qi(z), Li(z), Ni(z)}
to maximize their profits (5), taking prices as given.

3. Sectoral goods market clear: Nci =
∫
z∈Z e

−τizQi(z)dz for i = 1, 2, 3.

4. Labor market clears: N =
∑

i

∫
z∈Z Ni(z).

5. Land markets clear at every location:
∑

i Li(z) = L̄(z) for all z ∈ Z.

The equilibrium, as we show below, has a simple and intuitive spatial structure.

Sectors with higher transport cost intensity (τi) and lower land share (βi) locate closer

to the center. Realistically, services locate in a circle around the center, manufacturing

goods are produced on a ring around it, and agriculture occupies the outer ring.

To see why it is the case, construct the sectoral bid rent curves Ri(z). These are

the maximum rent an active producer in sector i would be willing to pay at location

z. A profit maximizing producer is choosing its land Ni(z) and labor demand Li(z) to

equalize the value marginal product of land and labor to rents and wages, respectively.

It is true for any rent function or wages it might face, so it is true for rents given by

its own bid-rent curve Ri(z), in particular.

Ri(z) = βiPie
−τizAi

(
Ni(z)

Li(z)

)1−βi
(6)

W = (1− βi)Pie−τizAi
(
Ni(z)

Li(z)

)−βi
(7)
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The sectoral labor-land ratio (employment density) can be expressed as

Ni(z)

Li(z)
=

1− βi
βi

Ri(z)

W
. (8)

Substituting this into the first-order condition for land use, we can get an implicit

expression for the sectoral bid rent curve:

Ri(z) = βiPie
−τizAi

(
1− βi
βi

Ri(z)

W

)1−βi
,

from which

Ri(z) = βi(1− βi)1/βi−1(PiAi)1/βiW 1−1/βie
− τi
βi
z
. (9)

Equation (9) pins down the gradient of the sectoral rent curve, which determines

how fast the bid-rents decrease with the distance from the CBD. The gradient is

an increasing function of the sectoral transport costs and a decreasing function of

land shares |∂ logRi(z)/∂ log z| = τi/βi. Intuitively, transport costs (τiz) increase

with distance, so producers offer lower rents for farther locations. If land were the

only factor of production (βi = 1), only this direct effect would be present and the

gradient would only depend on the transport cost intensity. With labor present,

however, the producers can substitute labor for land, introducing an indirect effect

on the gradient. As the equilibrium land-labor ratio shows (see equation 8), the land

share βi determines the strength of this substitutability: higher land share implies

bid-rent curves decreasing with a slower rate.

We can also get the employment gradient by substituting the bid rent curve into

the labor-land ratio,

Ni(z)

Li(z)
= (1− βi)1/βi

(
PiAi
W

)1/βi

e
− τi
βi
z
. (10)

This is the relationship we use to calibrate the sectoral transport cost intensities.

Proposition 1. Assume that τ1/β1 > τ2/β2 > τ3/β3 > 0. There exists a competitive

spatial equilibrium. The structure of this equilibrium is a partitioning, with locations

0 < z1 < z2 < z3 such that services with the highest τi/βi rate locate closest to the

CBD in [0, z1], manufacturing locates in (z1, z2], and agriculture locates in (z2, z3].

The proof is provided in the Appendix. Intuitively, the different exponential slope

of the bid-rent curves ensures that they cross exactly once. This results in a strict

partitioning across sectors, as shown in Figure 1. Equilibrium further requires that

these bid-rent curves are consistent with consumer expenditure shares.

The following propositions characterize how space use depends on development.
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Figure 1: Spatial equilibrium

The figure plots the structure of a spatial competitive equilibrium. It shows equilibrium sectoral bid

rent curves as a function of distance from the city center. A sector is active over an area where it is

willing to overbid alternative sectors. Crossings of the bid-rent curves determine the borders of the

sectors. Services are active in [0, z1], manufacturing in (z1, z2], and agriculture in (z2, z3].

Proposition 2. Assume σ1 = σ2 = σ3. Then a uniform increase in productivity

across sectors leaves sectoral and spatial allocations (zi, Li) unchanged.

Proposition 3. Assume σ1 > σ2 > σ3. Then a uniform increase in productivity

across sectors expands the amount of land devoted to services, and shrinks the amount

of land devoted to agriculture: z1, z2 and L1 increase, L3 decreases. The price of

services increases relative to agriculture.

Proposition 3 is consistent with the empirical facts about structural change, ur-

banization, and the relative price of services.

1.4 Aggregation across space

Sectoral production is a function of a suitably chosen representative location. Sectoral

output measured at the center is

Q̃i =

∫
z∈Zi

e−τizAiLi(z)βiNi(z)1−βidz,
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where Zi is the set of locations where sector i is active in equilibrium.

Let the representative location

z̃i = −βi
τi

ln

∫
z∈Zi

Li(z)

Li
e
− τi
βi
z
dz (11)

denote the average distance of sector i to the center, where Li =
∫
z∈Zi Li(z)dz is the

total amount of land devoted to sector i. This definition ensures that the trade cost

going to location z̃i equals the land-weighted average trade cost across all sectoral

locations,

e
− τi
βi
z̃i =

∫
z∈Zi

Li(z)

Li
e
− τi
βi
z
dz.

As we will see below, z̃i is a sufficient statistic about sector location for aggregation

purposes.

Proposition 4. Aggregate sectoral production function is of the form:

Q̃i = AiL
βi
i N

1−βi
i e−τiz̃i . (12)

It depends on trade costs from the representative location (z̃i) defined by equation

(11) and is a Cobb-Douglas aggregate of sectoral land (Li =
∫
Zi
Li(z)dz) and labor

(Ni =
∫
Zi
Ni(z)dz) use.

Using the aggregate production function, we can write output per worker in sector

i as
Q̃i

Ni

= Ai

(
Li
Ni

)βi
e−τiz̃i . (13)

This tends to be low when Hicks-neutral productivity is low, land is scarce (especially

for land intensive sectors), trade costs are high, or cities are large.

We call the first term the contribution of productivity, the second term the con-

tribution of land, and the third term the contribution of location. In the next section

we calibrate the model and estimate each of the three components.

2 Mapping the model to data

We calibrate the model to city-level data from the OECD to show how land usage

and sector location varies with development. We fix a number of parameters across

cities, but the supply of land and labor, as well as sectoral productivity are allowed

to vary.
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We assume that cities are in autarky so that we can analyze them separately.5

First we calibrate land shares and shipping costs using US data. Then we turn to the

calibration of parameters influencing cross-country, cross-city variations.

2.1 Common parameters

Land shares. We calibrate sectoral land shares (βi) using US data. Our aim is to

capture the share of immobile factors in production. These come from two sources:

(i) the direct use of land in production and (ii) the land-rent paid by workers. We

calibrate the direct use of land in sectoral production using US factor income share

estimates of Valentinyi and Herrendorf (2008). The first two columns of Table 1 show

their estimates for land and labor shares across sectors.

The indirect use of land is the land used by workers. We calibrate land-rent share

in labor as a product of the US aggregate rent-share in consumption expenditure

reported by the BLS (30%) and the average land-share of US house prices between

1984-1998 estimated by Davis and Palumbo (2008) (36%). We find it to be 10.8%.

We multiply this by the labor shares to get the indirect land shares listed in column

3 of Table 1. Our calibrated overall land shares (βi) are the sum of the direct and

indirect land shares, and they are shown in column 4.

The calibrated values show that land is a non-negligible factor in production in

each sectors. As expected, its role is the largest in agriculture (23%), but the land

share in manufacturing and services are both double-digit (10%–13%), mainly because

of the indirect land use of their workers.

Table 1: Calibrated factor shares

Factor shares Direct land Labor Indirect land Overall land share βi

Agriculture 0.18 0.46 0.05 0.23

Manufacturing 0.03 0.67 0.07 0.10

Services 0.06 0.66 0.07 0.13

Land and Labor shares are estimates of Valentinyi and Herrendorf (2008). Land share in labor is the

product of rent-share in US consumption expenditures, the average land-share of US house prices

between 1984-1998 estimated by Davis and Palumbo (2008) and the labor shares. Our land share

estimates are the sum of direct land share and the indirect land share in labor.

5Desmet and Rossi-Hansberg (2013) study a system of cities with endogenous mobility among

them.
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Shipping costs. We use the 2010 ZIP Business Patters of the U.S. Census (U.S.

Bureau of the Census 2010) to determine the location of sectors in the United States.

We use this to calibrate transportation costs and distances of the sectors from the

center.

The ZIP Business Patterns contains the number of establishments in employment

size categories in each ZIP code for each 6-digit NAICS code. We merge NAICS

codes into agriculture, manufacturing and services as follows. Agriculture is sector

11 of NAICS. We merge mining (21), utilities (22), and construction (23) together

with manufacturing industries (31-33). As services, we categorize the rest, including

public administration. We estimate employment by using the midpoints of the size

categories.

To map the model into the data, we need to specify how far each ZIP code is from

the city center. We take Urbanized Areas (UAs) as independent monocentric cities,

and we assign the central point to the business or administrative center of the first-

mentioned city in the UA, as given by Yahoo Maps. For example, the center of “New

York–Newark, NY-NJ-CT Urbanized Area” is the corner of Broadway and Chamber

St in downtown Manhattan, whereas the center of “Boston, MA–NH-RI Urbanized

Area” is 1 Boston Pl. We calculate the distance of each ZIP code to business center

of the nearest UA.

According to equation 8, the employment density of sector i in location z is pro-

portional to the rent-wage ratio. When industry i demands positive land in the neigh-

borhood of z, then the rent is proportional to e−τi/βiz. We can use this observation

to estimate τi:
d lnni(z)/li(z)

dz
=
d ln ri(z)

dz
= − τi

βi
.

To get a sense where each sectors is active, we calculate location quotients by

distance to the city center. For each sector, they measure the employment share at a

certain distance relative to the average employment share of the same sector. A value

higher than 1 implies that the sector is overrepresented in the particular distance

from the center.

Figure 2 shows that sectors sort as in the model: services are overrepresented closer

to the city center, while manufacturing and agriculture are both underrepresented

there. Agriculture shows a particularly steep gradient, with high relative employment

farther away from the city center. In the calculation of sectoral employment gradients

below, we restrict attention to the areas where the sectors are overrepresented. We

assume that services are active up to 30 kms from the center, manufacturing is active

between 10 and 60 kms (there is some mixed use) and agriculture farther than 60

kms.
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Figure 2: Sector location quotients
Source: ZIP Business Patterns. Plots the sectoral employment shares at a particular distance (in a

3km-wide ring) from the city center, relative to the average sectoral employment share. The figure

shows that sectors sort as in the model: services are overrepresented closer the the city center, while

manufacturing and agriculture are located mostly farther away, agriculture showing a particularly

steep gradient.
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Let nizc be the employment of industry i in ZIP code z, belonging to city (MSA)

c. Assuming that establishments in a given sector consume the same amount of land,6

we denote by lizc the number of establishments of sector i in ZIP code z. We can

then regress establishment size (workers per establishment) in each sector in each ZIP

code on fixed effects, and the distance of the ZIP code to the city center,

nizc
lizc

= eµc+νi−γid(z,c). (14)

The city fixed effect captures variation in rents and wages in the MSA, the sector fixed

effect captures variation in land and labor intensity and establishment size across

sectors. The key parameter of interest is γi, which captures how fast employment

declines with distance to the center by sector.

From the ZBP, we have the approximate employment of the sector (reconstructed

from establishment-size bins), and the total area of the ZIP code, but area is not

broken down by sector. If a ZIP code is exclusively used by one of the three sector,

this is not a problem. Otherwise, we impute the area used by sector i as follows.

The mode predicts the area per worker in sector i in ZIP-code z to be

Li(z)

Ni(z)
=

1− βi
βi

W

R(z)
.

Because all sectors face the same wages and rents in the same ZIP code, we can

distribute land in proportion to

1− βi
βi

Ni(z).

In urban ZIP codes, there is also a substantial amount of residential land. We know

that households spend 0.3 × 0.36 fraction of their income on residential land rent.

Assuming that residents’ only income are wages,

R(z)H(z)

WP (z)
= 0.3× 0.36,

where P (z) is the number of people living in ZIP code z. Hence total residential area

is

H(z) = 0.3 · 0.36P (z)
W

R(z)
.

We then allocate residential land in proportion to 0.3 · 0.36P (z).

6We believe this approximation is likely to bias our estimates of the rent gradient downward.

Rural establishments probably occupy more space that urban establishments even in the same narrow

industry, so establishment sizes do not go down as fast with distance as employment density does.
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We estimate (14) by a Poisson regression which ensures that the equation holds

in expectation, and permits estimation even when nizc = 0, which is often the case.

The estimates of γi and the implied sectoral transport cost intensities τi in the three

sectors are below.

Table 2: Estimated rent and price gradients

Gradient (per km)

Land share βi Rents γi Prices τi

Services 13% 13.15% 1.71%

Manufacturing 10% 5.15% 0.52%

Agriculture 23% 3.54% 0.81%

Sectoral rent gradients γi are estimated using US employment-density observation across ZIP codes

in MSAs. Price gradients reflect transport costs (τi) and are estimated by multiplying rent gradients

with sectoral land shares (βi).

The three columns report the calibrated land shares, and the estimates for rent

and price gradients, respectively, for each sector. The estimated coefficients can be

interpreted as follows. We find that the rents paid by services become 13.15% cheaper

with every kilometer from the city center over the 0-30km range, where services are

active. Though a 13% reduction is substantial, it does not seem unrealistic with a

whole 1 kilometer distance. In line with our intuition, rent gradients of manufacturing

and agriculture (measured further away from the city center) both imply slower rent

declines. We infer price gradients reflecting the transportation cost intensities (τi)

from the measured rent gradients γi = τi/βi and the sectoral land shares. The last

column of table 2.1 shows that we find transportation costs of services significantly

higher (1.71%) than those of manufacturing and agriculture (0.52%, 0.81%). These

rent gradients are in line with estimates of Schmenner (1981) and Eberts and Gron-

berg (1982) and are lower than historical rent gradients in New York City (Atack

and Margo 1998). We hold these estimated technology parameters constant across

countries and cities.

Utility parameters. We estimate the utility function (1) in cross-country data

from 2007. Expenditure shares ({xi}) are from the 2005 wave of the International

Comparison Program (Bank 2005). We calculate sectoral price levels ({Pi}) from the

International Comparison Program’s disaggregate data on 24 product headings. We

measure per capita income by purchasing power parity adjusted GDP per capita (y).
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We estimate the following equation for expenditure share of sector i = 1, 2, 3 in

country c by non-linear least squares,

xic =
αiλ(yc)

−σiP 1−σi
ic∑

j αjλ(yc)−σjP
1−σj
jc

+ εic, (15)

where λ(yc) = by
−1/

∑
j xj0σj

c is the first-order Taylor approximation of marginal utility

around average expenditure shares {xj0}, and εic is an error term independent of

income and prices.7

Our estimated elasticities are σ1 = 0.45, σ2 = 0.46 and σ3 = 0.16. The model fits

the expenditure share data quite well, with an R2 between 0.86 for manufacturing

and 0.95 for services. The model captures the fact that the expenditure share of

agriculture is decreasing in income by estimating a low σ3. The income elasticities of

manufacturing and services are not significantly different from one another.

Figure 3 plots the estimated expenditure shares against GDP per capita of the

country. Note that because these shares also depend on prices, the univariate rela-

tionship is necessarily noisy. The well-known pattern of structural transformation is

visible.8 The share of services is steadily growing with development, while the share

of agriculture is shrinking and eventually vanishes. Manufacturing follows a hump

shaped pattern with development.

2.2 Recovering city-level parameters

We use city-level data on land area, employment and GDP per capita from the the

OECD Metropolitan Areas database (OECD 2012). Our sample includes 277 cities

across OECD countries with non-missing area and employment data in 2007.9 Cities

are defined as “functional urban areas,” and are typically extend beyond the ad-

ministrative boundaries. For US cities, they roughly correspond to Metropolitan

Statistical Areas. To obtain variation in expenditure shares across cities, we use the

model-consistent expenditure shares predicted by our estimated utility function.

The following equations completely characterize the spatial equilibrium of city c.

7To be precise, since we are only approximating λ, higher-order terms in income will show up in

the error term. As our results do not change when we include second-order terms in income, this

effect is likely quantitatively small.
8See, for example, Buera and Kaboski (2012) for recent cross-country estimates of how expendi-

ture shares depend on development.
9We impute employment from population for three cities in Switzerland.
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Figure 3: Estimated expenditure shares and GDP per capita
Fitted values of regression (15) plotted against log GDP per capita. Estimates also depend on

sectoral relative prices, leading to variation independent of income.

Representative location.

z̃ic = −βi
τi

ln

[∫ zic

z=zi−1,c

z2π

Lic
exp(−zτi/βi)dz

]
(16)

Land market clearing.

Lic =

∫ zic

z=zi−1,c

z2πdz (17)

with L1c + L2c + L3c = Lc.

Labor intensity.
Nic

Lic
=

1− βi
βi

exp(ζic − z̃icτi/βi), (18)

where we introduced

ζic = ln βi +
1− βi
βi

ln(1− βi) +
1

βi
(lnPic + lnAic − lnWc)

to simplify notation. The endogenous variable ζic captures relative factor prices in

sector i.
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Rent arbitrage.

ζic − zicτi/βi = ζi+1,c − zicτi+1/βi+1 (19)

Labor market clearing. ∑
i

Nic = Nc (20)

Goods market clearing.

WcNic = (1− βi)xicyc (21)

For each city c, we solve these equations for (z1, z2, z3), (z̃1, z̃2, z̃3), (L1, L2, L3),

(N1, N2, N3) and (ζ1, ζ2, ζ3).

Given city-level data on total area L, total employment N , sectoral prices Pi, and

GDP per capita Y , we recover the sector-city level productivity parameters as follows.

1. Using the estimated expenditure shares xic and equations (21) and (20), calcu-

late (N1c, N2c, N3c).

2. Assuming the city is circular, set z3c =
√
Lc/π.

3. Pick a candidate z1c and z2c dividing the service and manufacituring areas.

4. Using equations (17) and (16), calculate (L1c, L2c, L3c) and (z̃1c, z̃2c, z̃3c).

5. Using equation (18), calculate (ζ1c, ζ2c, ζ3c).

6. If rent arbitrage equation (22) is not satisfied, go back to step 3.

7. Calculate equilibrium wages as

Wc =

∑
i(1− βi)Yic

Nc

and using data on prices, recover

Aic =
βi

(1− βi)1−βi
Wc

Pic
exp(ζic).
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Table 3: Distribution of productivity components across cities

Contribution to output per worker of

productivity land per worker location

Services 0.186 1.083 0.987

0.683 1.433 1.135

Manufacturing 0.149 0.968 0.985

0.706 1.316 1.097

Agriculture 0.123 0.880 0.958

0.589 1.911 1.200

Notes: Table presents the 10th and 90th percentiles of contributions to output per worker. All

contributions are expressed relative to New York. See text for the precise definition of decomposition.

3 Decomposition of output per worker

To evaluate the quantitative importance of our mechanism, we report the decom-

position of output per worker (13) into a Hicks-neutral productivity term, land per

worker, and the representative location of the industry. We express each component

relative to New York, one of the richest cities in the sample.

Table 3 presents the distribution of productivity components across cities. For

each sector and and each productivity component, we report the 10th and 90th per-

centile of the component relative to New York. For example, the 10th percentile of

Hicks-neutral productivity in the service sector is only 18.6 percent of that in New

York. The productivity gap in similar in the three sectors.

The contribution of land per worker ranges between 108 and 143 percent for

services, 97 and 132 percent for manufacturing, and 88 and 191 percent for agriculture.

This is not surprising, as agriculture is the most land intensive of the three sectors

and many cities are smaller than New York and have less agricultural land available.

The contribution of sector location is generally between 96 and 120 percent.

To see how land usage and city structure varies with development, we plot these

productivity contributions against GDP per capita of the cities. Figure 4 shows the

nonparametric relationship between productivity and GDP per capita, separately

for each of the three sectors. Not surprisingly, richer cities are estimated to have

higher productivity. The three sectoral productivities run in parallel, showing that

technological differences across cities are unbiased. This is in contrast with Herrendorf

and Valentinyi (2012), who find large heterogeneity in sectoral productivities.

Figure 5 shows the contribution of land per worker to output per worker, relative
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Figure 4: The contribution of productivity to output per worker
Notes: Figure presents the nonparametric relationship between city-level GDP per capita and sec-

toral productivity using locally weighted scatterplot smoothing. Productivity is expressed relative

to that in New York.

Figure 5: The contribution of land usage to output per worker
Notes: Figure presents the nonparametric relationship between city-level GDP per capita and the

contribution of land usage to output per worker using locally weighted scatterplot smoothing. The

contribution is expressed relative to that in New York.
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Figure 6: The contribution of sector location to output per worker
Notes: Figure presents the nonparametric relationship between city-level GDP per capita and the

contribution of sector location to output per worker using locally weighted scatterplot smoothing.

The contribution is expressed relative to that in New York.

to New York. Across the entire level of city GDP per capita, this contribution is

less than one, because most cities are more densely populated than the New York

metropolitan area. There is no clear tendency with development, but richer cities

tend to have more land avaible for agriculture than for other sectors. This is because

agricultural employment in these cities are smaller and they can use larger amounts

of land on the city fringe.

Figure 6 plots the contribution of sector location to output per worker. For all

cities this contribution is greater than in New York. This is because these cities tend

to be smaller in area than New York, as is shown in Figure 7. For rich and large

cities, the spatial sprawl reduces output per worker by about 10 percent in services

and manufacturing, and even more in agriculture.

4 Conclusion

We introduced location choice in a multi-sector general equilibrium model. Producers

in agriculture, manufacturing and services choose their location to trade off land rents

with transport costs to the city center. We showed how space affects the aggregate

production function and decompose output per worker into productivity, land per
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Figure 7: City radius and GDP per capita
Notes: Figure presents the nonparametric relationship between city-level GDP per capita and the

radius of the city using locally weighted scatter plot smoothing. City radius is estimated using

OECD data on city area and assuming circular cities.

worker, and a term adjusting for sector location. In our model, services are luxury

goods. As a result, richer cities have larger service cores, higher service prices, and

relatively less output per worker in services. These predictions are broadly consistent

with the data. We calibrated our model to data on cities in OECD countries and

showed that land and location explain 10–30 percentage points of the variation in

output per worker.

In our calibration, sectoral productivities varied to the same extent across cities.

This leaves less room for technology-based explanations as to why sectoral output per

worker and sectoral prices vary with development.

We see two avenues for further research. First, the number and size of cities

within countries can be endogenized to see how this contributes to aggregate out-

comes (Desmet and Rossi-Hansberg 2013; Ramondo, Rodŕıguez-Clare, and Saboŕıo-

Rodŕıguez 2016). Second, urbanization patterns may be very different in less devel-

oped countries (Glaeser 2014; Harari 2016). The model can be calibrated to richer

data on transport costs and land use across cities around the globe.
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Appendix

A Proofs

A.1 Proof of Proposition 1

We first show that the allocation of space across sectors follows a strict partitioning,

and hence can be characterized by two cutoffs: z1 denotes the boundary between

services and manufacturing and z2 denotes the boundary between manufacturing and

agriculture. We then apply Brouwer’s fixed point theorem to show there exist such

equilibrium cutoffs.

First note that profit maximization requires Ri(z) ≥ R(z) for all industries and

locations and a strict inequality implies that Qi(z) = 0. Because the three bid-rent

curves have different slopes, they can only intersect at a measure zero set of points.

Hence all locations are used by a single industry, there is no mixed use.

The single-crossing property of bid-rent curves imply a strict partitioning. For any

pair of sectors with τi/βi > τj/βj we have sup{z : Qi(z) > 0} ≤ inf{z : Qj(z) > 0}.
That is, all sector i locations are closer to the CBD than any sector j location.

Equation (3) ensures positive demand for all three products so that all three

sectors are active. The only such partitioning is where {z : Q1(z) > 0} = [0, z1],

{z : Q2(z) > 0} = (z1, z2] and {z : Q3(z) > 0} = (z2, z3]. At these boundaries, a rent

arbitrage condition holds:

Ri(zi) = Ri+1(zi). (22)

To use Brouwer’s fixed point theorem, construct the following mapping. Take a pair of

z1 < z2 ∈ [0, z3]. Denote the set of admissible zs by Z = {(z1, z2) : z1 < z2 ∈ [0, z3]},
which is a compact and convex set. Let W ≡ 1 serve as the numeraire. Use the rent

arbitrage condition at the boundaries (22) and the resource constraint for aggregate

labor

N =
3∑
i=1

∫ zi

z=zi−1

(1− βi)1/βi(PiAi)1/βie−zτi/βiL̄(z)dz,

to solve for prices P1, P2 and P3. These prices are a continuous function of (z1, z2).

Given these prices, solve for utility-maximizing expenditure shares (x1, x2, x3). The

total amount of rents payable to each sector can then be expressed, in relative terms,

as
Ri

Rj

=
βixi
βjxj

.

Let (z′1, z
′
2) be the sector boundaries consistent with these relative rent amounts.

Clearly, (z′1, z
′
2) ∈ Z and the mapping is continuous. Applying Brouwer’s fixed point
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theorem, there exists a (z∗1 , z
∗
2) such that (z′∗1 , z

′∗
2 ) = (z∗1 , z

∗
2) and all equilibrium con-

ditions hold with equality. Q.E.D.

A.2 Proof of Proposition 2

We will verify that when d lnAi = κ for all i, d lnPi = −κ is an equilibrium. Because

resource allocations across sectors and space only depend on PiAi, these will not

change. Output in each sector goes up by d lnQi = κ. Because preferences are

homothetic and relative prices have not changed, expenditure shares remain constant.

They are hence still consistent with the equilibrium. Q.E.D.

A.3 Proof of Proposition 3

Let dz denote the 2 × 1 vector (dz1, dz2), db denote the 3 × 1 vector with elements

d ln(PiAi/W )/βi, and dq denote the 3× 1 vector with elements d ln(PiQi/W ).

Totally differentiating the production function (23) (below) yields

dq− db = M1dz,

where M1 is a 3× 2 matrix,

M1 =

 e−z1τ1/β1L̄(z1)/L̃1 0

−e−z1τ2/β2L̄(z1)/L̃2 e−z2τ2/β2L̄(z2)/L̃2

0 −e−z2τ3/β3L̄(z2)/L̃3

 .
Totally differentiating the rent arbitrage condition (22) yields

M2db = dz,

where M2 is a 2× 3 matrix,[
1

τ1/β1−τ2/β2
−1

τ1/β1−τ2/β2 0

0 1
τ2/β2−τ3/β3

−1
τ2/β2−τ3/β3 0

]
.

Combining these two equilibrium conditions, we can express the changes in sector

boundaries as a function of changes in sector shares,

dz = M2(I + M1M2)
−1dq ≡M3dq.

The 2× 3 matrix M3 has the structure

M3 =

[
κ1 + κ2 −κ1 −κ2
κ3 κ4 −(κ3 + κ4)

]
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for some positive κs.

Using equation (4) for the income elasticity of consumption in each of the three

sectors, dz1/d ln y > 0 whenever

σ1 >
κ1

κ1 + κ2
σ2 +

κ2
κ1 + κ2

σ3,

which holds for because σ1 > σ2 > σ3.

Similarly, dz2/d ln y > 0 whenever

σ3 <
κ3

κ3 + κ4
σ1 +

κ4
κ3 + κ4

σ2,

which holds for because σ1 > σ2 > σ3. The amount of land usage and relative prices

follow from the equilibrium conditions. Q.E.D.

A.4 Proof of Proposition 4

Let us express value added (measured at the center) at a location z per unit of land:

e−τizQi(z)

Li(z)
= e−τizAi(z)

(
Ni(z)

Li(z)

)1−βi
= (1− βi)1/βi−1A1/βi

i

(
W

Pi

)1−1/βi
e
− τi
βi
z
,

where we used equation 8 on employment density. From this, total supply of sector

i becomes

Q̃i =

∫
z∈Zi

e−τizQi(z)

Li(z)
Li(z)dz = (1− βi)1/βi−1(Ai)1/βi

(
W

Pi

)1−1/βi
Lie
− τi
βi
z̃i . (23)

by the definition of the representative location of the sector in equation 11.

Overall employment in the sector,

Ni =

∫
z∈Zi

Ni(z)

Li(z)
Li(z)dz = (1− βi)1/βi

(
PiAi
W

)1/βi

Lie
− τi
βi
z̃i ,

so that we can express W/Pi as

W

Pi
= (1− βi)N−βii AiL

βi
i e
−τiz̃i

Substituting this result to equation (23), we obtain the aggregate production function.

Q.E.D.
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